414 research outputs found

    Data-driven root-cause analysis for distributed system anomalies

    Full text link
    Modern distributed cyber-physical systems encounter a large variety of anomalies and in many cases, they are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among the sub-systems. In this regard, root-cause analysis becomes highly intractable due to complex fault propagation mechanisms in combination with diverse operating modes. This paper presents a new data-driven framework for root-cause analysis for addressing such issues. The framework is based on a spatiotemporal feature extraction scheme for distributed cyber-physical systems built on the concept of symbolic dynamics for discovering and representing causal interactions among subsystems of a complex system. We present two approaches for root-cause analysis, namely the sequential state switching (S3S^3, based on free energy concept of a Restricted Boltzmann Machine, RBM) and artificial anomaly association (A3A^3, a multi-class classification framework using deep neural networks, DNN). Synthetic data from cases with failed pattern(s) and anomalous node are simulated to validate the proposed approaches, then compared with the performance of vector autoregressive (VAR) model-based root-cause analysis. Real dataset based on Tennessee Eastman process (TEP) is also used for validation. The results show that: (1) S3S^3 and A3A^3 approaches can obtain high accuracy in root-cause analysis and successfully handle multiple nominal operation modes, and (2) the proposed tool-chain is shown to be scalable while maintaining high accuracy.Comment: 6 pages, 3 figure

    Online Robust Policy Learning in the Presence of Unknown Adversaries

    Full text link
    The growing prospect of deep reinforcement learning (DRL) being used in cyber-physical systems has raised concerns around safety and robustness of autonomous agents. Recent work on generating adversarial attacks have shown that it is computationally feasible for a bad actor to fool a DRL policy into behaving sub optimally. Although certain adversarial attacks with specific attack models have been addressed, most studies are only interested in off-line optimization in the data space (e.g., example fitting, distillation). This paper introduces a Meta-Learned Advantage Hierarchy (MLAH) framework that is attack model-agnostic and more suited to reinforcement learning, via handling the attacks in the decision space (as opposed to data space) and directly mitigating learned bias introduced by the adversary. In MLAH, we learn separate sub-policies (nominal and adversarial) in an online manner, as guided by a supervisory master agent that detects the presence of the adversary by leveraging the advantage function for the sub-policies. We demonstrate that the proposed algorithm enables policy learning with significantly lower bias as compared to the state-of-the-art policy learning approaches even in the presence of heavy state information attacks. We present algorithm analysis and simulation results using popular OpenAI Gym environments.Comment: 18 pages, 9 figure

    An unsupervised spatiotemporal graphical modeling approach to anomaly detection in distributed CPS

    Full text link
    Modern distributed cyber-physical systems (CPSs) encounter a large variety of physical faults and cyber anomalies and in many cases, they are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among the sub-systems. This paper presents a new data-driven framework for system-wide anomaly detection for addressing such issues. The framework is based on a spatiotemporal feature extraction scheme built on the concept of symbolic dynamics for discovering and representing causal interactions among the subsystems of a CPS. The extracted spatiotemporal features are then used to learn system-wide patterns via a Restricted Boltzmann Machine (RBM). The results show that: (1) the RBM free energy in the off-nominal conditions is different from that in the nominal conditions and can be used for anomaly detection; (2) the framework can capture multiple nominal modes with one graphical model; (3) the case studies with simulated data and an integrated building system validate the proposed approach.Comment: ICCPS 201

    Semantic Adversarial Attacks: Parametric Transformations That Fool Deep Classifiers

    Full text link
    Deep neural networks have been shown to exhibit an intriguing vulnerability to adversarial input images corrupted with imperceptible perturbations. However, the majority of adversarial attacks assume global, fine-grained control over the image pixel space. In this paper, we consider a different setting: what happens if the adversary could only alter specific attributes of the input image? These would generate inputs that might be perceptibly different, but still natural-looking and enough to fool a classifier. We propose a novel approach to generate such `semantic' adversarial examples by optimizing a particular adversarial loss over the range-space of a parametric conditional generative model. We demonstrate implementations of our attacks on binary classifiers trained on face images, and show that such natural-looking semantic adversarial examples exist. We evaluate the effectiveness of our attack on synthetic and real data, and present detailed comparisons with existing attack methods. We supplement our empirical results with theoretical bounds that demonstrate the existence of such parametric adversarial examples.Comment: Accepted to International Conference on Computer Vision, (ICCV) 201

    Collaborative Deep Learning in Fixed Topology Networks

    Full text link
    There is significant recent interest to parallelize deep learning algorithms in order to handle the enormous growth in data and model sizes. While most advances focus on model parallelization and engaging multiple computing agents via using a central parameter server, aspect of data parallelization along with decentralized computation has not been explored sufficiently. In this context, this paper presents a new consensus-based distributed SGD (CDSGD) (and its momentum variant, CDMSGD) algorithm for collaborative deep learning over fixed topology networks that enables data parallelization as well as decentralized computation. Such a framework can be extremely useful for learning agents with access to only local/private data in a communication constrained environment. We analyze the convergence properties of the proposed algorithm with strongly convex and nonconvex objective functions with fixed and diminishing step sizes using concepts of Lyapunov function construction. We demonstrate the efficacy of our algorithms in comparison with the baseline centralized SGD and the recently proposed federated averaging algorithm (that also enables data parallelism) based on benchmark datasets such as MNIST, CIFAR-10 and CIFAR-100

    Root-cause Analysis for Time-series Anomalies via Spatiotemporal Graphical Modeling in Distributed Complex Systems

    Full text link
    Performance monitoring, anomaly detection, and root-cause analysis in complex cyber-physical systems (CPSs) are often highly intractable due to widely diverse operational modes, disparate data types, and complex fault propagation mechanisms. This paper presents a new data-driven framework for root-cause analysis, based on a spatiotemporal graphical modeling approach built on the concept of symbolic dynamics for discovering and representing causal interactions among sub-systems of complex CPSs. We formulate the root-cause analysis problem as a minimization problem via the proposed inference based metric and present two approximate approaches for root-cause analysis, namely the sequential state switching (S3S^3, based on free energy concept of a restricted Boltzmann machine, RBM) and artificial anomaly association (A3A^3, a classification framework using deep neural networks, DNN). Synthetic data from cases with failed pattern(s) and anomalous node(s) are simulated to validate the proposed approaches. Real dataset based on Tennessee Eastman process (TEP) is also used for comparison with other approaches. The results show that: (1) S3S^3 and A3A^3 approaches can obtain high accuracy in root-cause analysis under both pattern-based and node-based fault scenarios, in addition to successfully handling multiple nominal operating modes, (2) the proposed tool-chain is shown to be scalable while maintaining high accuracy, and (3) the proposed framework is robust and adaptive in different fault conditions and performs better in comparison with the state-of-the-art methods.Comment: 42 pages, 5 figures. arXiv admin note: text overlap with arXiv:1605.0642

    Flow Shape Design for Microfluidic Devices Using Deep Reinforcement Learning

    Get PDF
    Microfluidic devices are utilized to control and direct flow behavior in a wide variety of applications, particularly in medical diagnostics. A particularly popular form of microfluidics -- called inertial microfluidic flow sculpting -- involves placing a sequence of pillars to controllably deform an initial flow field into a desired one. Inertial flow sculpting can be formally defined as an inverse problem, where one identifies a sequence of pillars (chosen, with replacement, from a finite set of pillars, each of which produce a specific transformation) whose composite transformation results in a user-defined desired transformation. Endemic to most such problems in engineering, inverse problems are usually quite computationally intractable, with most traditional approaches based on search and optimization strategies. In this paper, we pose this inverse problem as a Reinforcement Learning (RL) problem. We train a DoubleDQN agent to learn from this environment. The results suggest that learning is possible using a DoubleDQN model with the success frequency reaching 90% in 200,000 episodes and the rewards converging. While most of the results are obtained by fixing a particular target flow shape to simplify the learning problem, we later demonstrate how to transfer the learning of an agent based on one target shape to another, i.e. from one design to another and thus be useful for a generic design of a flow shape.Comment: Neurips 2018 Deep RL worksho

    Deep Value of Information Estimators for Collaborative Human-Machine Information Gathering

    Full text link
    Effective human-machine collaboration can significantly improve many learning and planning strategies for information gathering via fusion of 'hard' and 'soft' data originating from machine and human sensors, respectively. However, gathering the most informative data from human sensors without task overloading remains a critical technical challenge. In this context, Value of Information (VOI) is a crucial decision-theoretic metric for scheduling interaction with human sensors. We present a new Deep Learning based VOI estimation framework that can be used to schedule collaborative human-machine sensing with computationally efficient online inference and minimal policy hand-tuning. Supervised learning is used to train deep convolutional neural networks (CNNs) to extract hierarchical features from 'images' of belief spaces obtained via data fusion. These features can be associated with soft data query choices to reliably compute VOI for human interaction. The CNN framework is described in detail, and a performance comparison to a feature-based POMDP scheduling policy is provided. The practical feasibility of our method is also demonstrated on a mobile robotic search problem with language-based semantic human sensor inputs.Comment: 10 pages, to appear in ICCPS 201

    A Forward-Backward Approach for Visualizing Information Flow in Deep Networks

    Full text link
    We introduce a new, systematic framework for visualizing information flow in deep networks. Specifically, given any trained deep convolutional network model and a given test image, our method produces a compact support in the image domain that corresponds to a (high-resolution) feature that contributes to the given explanation. Our method is both computationally efficient as well as numerically robust. We present several preliminary numerical results that support the benefits of our framework over existing methods.Comment: Presented at NIPS 2017 Symposium on Interpretable Machine Learnin

    Deep Action Sequence Learning for Causal Shape Transformation

    Full text link
    Deep learning became the method of choice in recent year for solving a wide variety of predictive analytics tasks. For sequence prediction, recurrent neural networks (RNN) are often the go-to architecture for exploiting sequential information where the output is dependent on previous computation. However, the dependencies of the computation lie in the latent domain which may not be suitable for certain applications involving the prediction of a step-wise transformation sequence that is dependent on the previous computation only in the visible domain. We propose that a hybrid architecture of convolution neural networks (CNN) and stacked autoencoders (SAE) is sufficient to learn a sequence of actions that nonlinearly transforms an input shape or distribution into a target shape or distribution with the same support. While such a framework can be useful in a variety of problems such as robotic path planning, sequential decision-making in games, and identifying material processing pathways to achieve desired microstructures, the application of the framework is exemplified by the control of fluid deformations in a microfluidic channel by deliberately placing a sequence of pillars. Learning of a multistep topological transform has significant implications for rapid advances in material science and biomedical applications
    corecore